Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract We present spatially resolved measurements of SO2and NaCl winds on Io at several unique points in its orbit: before and after eclipse and at maximum eastern and western elongation. The derived wind fields represent a unique case of meteorology in a rarified, volcanic atmosphere. Through the use of Doppler shift measurements in emission spectra obtained with the Atacama Large Millimeter/submillimeter Array between ~346 and 430 GHz (~0.70–0.87 mm), line-of-sight winds up to ~−100 m s−1in the approaching direction and >250 m s−1in the receding direction were derived for SO2at altitudes of ~10–50 km, while NaCl winds consistently reached ~∣150–200∣ m s−1in localized regions up to ~30 km above the surface. The wind distributions measured at maximum east and west Jovian elongations and on the sub-Jovian hemisphere pre- and posteclipse were found to be significantly different and complex, corroborating the results of simulations that include surface temperature and frost distribution, volcanic activity, and interactions with the Jovian magnetosphere. Further, the wind speeds of SO2and NaCl are often inconsistent in direction and magnitude, indicating that the processes that drive the winds for the two molecular species are different and potentially uncoupled; while the SO2wind field can be explained through a combination of sublimation-driven winds, plasma torus interactions, and plume activity, the NaCl winds appear to be primarily driven by the plasma torus.more » « lessFree, publicly-accessible full text available December 20, 2025
- 
            Abstract The search for extraterrestrial intelligence at radio frequencies has focused on spatial filtering as a primary discriminant from terrestrial interference. Individual search campaigns further choose targets or frequencies based on criteria that theoretically maximize the likelihood of detection, serving as high-level filters for interesting targets. Most filters for technosignatures do not rely on intrinsic signal properties, as the radio-frequency interference (RFI) environment is difficult to characterize. In B. Brzycki et al. (2023), we proposed that the effects of interstellar medium (ISM) scintillation on narrowband technosignatures may be detectable under certain conditions. In this work, we perform a dedicated survey for scintillated technosignatures toward the Galactic center and Galactic plane at theCband (3.95–8.0 GHz) using the Robert C. Byrd Green Bank Telescope (GBT) as part of the Breakthrough Listen program. We conduct a Doppler drift search and directional filter to identify potential candidates and analyze results for evidence of scintillation. We characterize theC-band RFI environment at the GBT across multiple observing sessions spread over months and detect RFI signals with confounding scintillation-like intensity modulation. We do not find evidence of putative narrowband transmitters with drift rates between ±10 Hz s−1toward the Galactic center, ISM-scintillated or otherwise, above an equivalent isotropic radiated power of 1.9 × 1017W up to 8.5 kpc.more » « less
- 
            Abstract Since the Voyager mission flybys in 1979, we have known the moon Io to be both volcanically active and the main source of plasma in the vast magnetosphere of Jupiter. Material lost from Io forms neutral clouds, the Io plasma torus and ultimately the extended plasma sheet. This material is supplied from Io’s upper atmosphere and atmospheric loss is likely driven by plasma-interaction effects with possible contributions from thermal escape and photochemistry-driven escape. Direct volcanic escape is negligible. The supply of material to maintain the plasma torus has been estimated from various methods at roughly one ton per second. Most of the time the magnetospheric plasma environment of Io is stable on timescales from days to months. Similarly, Io’s atmosphere was found to have a stable average density on the dayside, although it exhibits lateral (longitudinal and latitudinal) and temporal (both diurnal and seasonal) variations. There is a potential positive feedback in the Io torus supply: collisions of torus plasma with atmospheric neutrals are probably a significant loss process, which increases with torus density. The stability of the torus environment may be maintained by limiting mechanisms of either torus supply from Io or the loss from the torus by centrifugal interchange in the middle magnetosphere. Various observations suggest that occasionally (roughly 1 to 2 detections per decade) the plasma torus undergoes major transient changes over a period of several weeks, apparently overcoming possible stabilizing mechanisms. Such events (as well as more frequent minor changes) are commonly explained by some kind of change in volcanic activity that triggers a chain of reactions which modify the plasma torus state via a net change in supply of new mass. However, it remains unknown what kind of volcanic event (if any) can trigger events in torus and magnetosphere, whether Io’s atmosphere undergoes a general change before or during such events, and what processes could enable such a change in the otherwise stable torus. Alternative explanations, which are not invoking volcanic activity, have not been put forward. We review the current knowledge on Io’s volcanic activity, atmosphere, and the magnetospheric neutral and plasma environment and their roles in mass transfer from Io to the plasma torus and magnetosphere. We provide an overview of the recorded events of transient changes in the torus, address several contradictions and inconsistencies, and point out gaps in our current understanding. Lastly, we provide a list of relevant terms and their definitions.more » « less
- 
            Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
- 
            Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
